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Abstract. A simple and elegant semiclassical theory for propagating wavepackets is presented. 
n e  development of the theory avoids the explicit use of the Green-function formalism. It 
involves expanding the potential to a quadratic time-dependent form and the use of multiple 
reference trajectories. The classical analogue in phase space predicts the accuracy of the results. 
The theory is applied to the calculation of the autocorrelation function in a Coulomb field in 
one dimension. Remarkable agreement with an exact quantum calculation is obtained in many 
circumstances in spite of the Coulomb singularity. All the detailed quantum behaviour, including 
the long-time recurrences and the spectrum, is reproduced. 

1. Introduction 

For many years, the stationary-phase approximation, known as timedependent WKB 
(Wentzel-Kramers-Brillioun) [l], has been the standard semiclassical theory of quantum 
wavefunction propagation. It explains, in principle, how to evolve a quantum state 
approximately in terms of a predetermined set of classical trajectories. However in practice, 
implementations in non-trivial circumstances are difficult to find and guesses as to its 
accuracy have often been rather pessimistic. One available technique for propagating 
wavepackets semiclassically, has been linear wavepacket dynamics [2, 31. However, this 
technique fails as soon as nonlinear classical dynamical behaviour arises; thus, often 
restricting the method to extremely short-time validity. The failure occurs whether the 
system is integrable or chaotic since both kinds of dynamics generically have nonlineaities. 
In the past couple of years, more sophisticated methods have been developed [&lo] and 
semiclassical propagation has proven to be surprisingly accurate even in fully developed 
chaotic situations [ll-161. These methods incorporate nonlinear dynamics through the 
use of a time-dependent semiclassical Green-function approach and multiple reference 
trajectories. Using these techniques as a guide, in recent work 117-191 we simplified 
this nonlinear dynamical theory by placing it in the same framework as earlier derivations 
of the linear wavepacket dynamics 12.31. Although this method is simpler in its approach 
and avoids the explicit use of Green functions, it leads to the same expressions for each 
reference trajectory's contribution to a correlation function as the Green-function work 
published in [14]. In this paper we give a full account of the semiclassical theory and 
also explore the classicalquantum correspondence by calculating the Wigner distribution 
and classical correlation function to the same level of approximation as our semiclassical 
method. 
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Recent experimental advances [20-271 have created new possibilities for exploring the 
classical limit in atomic, molecular, and condensed-matter physics. However, much of 
the new progress with the semiclassical approximation has been made for simple models 
with little direct physical application. For this reason, we shall apply our method to the 
Coulomb potential, which is one of the most important cases for practical applications. A 
number of crucial points for such a case have been addressed in our previous work for 
the first time [17], where we have shown that: (a) semiclassical propagation is remarkably 
accurate in spite of the Coulomb singularity, (b) coherent quantum effects such as the already 
theoretically predicted and experimentally observed wavepacket recurrences and fractional 
recurrences [28-351 can be understood directly from a semiclassical dynamical point of view, 
i.e. without reference to the spectrum or WKB quantization of trajectories, (c)  line intensities 
and discrete spectra are very well reproduced even though the trajectories involved span a 
continuous range of energies, (d) the circumstances under which our semiclassical method 
works can be determined in advance with the help of classical phase-space plots. Here 
we explain these and other issues in greater depth and investigate a wider variety of initial 
Gaussian wavepacket parameters than reported earlier. The quantum recurrence time is also 
calculated analytically from the semiclassical approximation, and a connection between the 
classical reference trajectories near the recurrence time and the Bohr orbits is established. 

2. Extending wavepacket dynamics 

As long as the natural wavelength of a problem is sufficiently small and a wavepacket is 
well localized in position and momentum, only the local behaviour of the potential in the 
neighbourhood of the wavepacket’s moving centre is relevant to its evolution. The trajectory 
underlying the motion of the wavepacket’s centre represents the local classical motion to 
within small linear deviations. All the neighbouring trajectories needed to construct the 
wavepacket are taken into account with a stability analysis of the central trajectory. This 
is how ordinary linear wavepacket dynamics works-one reference trajectory represents 
a group of trajectories that collectively fully support the conslmction of the evolving 
wavepacket [2, 31. As nonlinearities in the dynamics begin to emerge, the wavepacket 
is no longer described by this single reference trajectory and its stability parameters. The 
purely classical dynamics is no longer being treated properly. The key to going beyond 
ordinary linear wavepacket dynamics as pointed out in [11-15] rests in restoring a proper 
treatment of the classical dynamics. 

Taking the overlap of a localized wavepacket with the evolving wavefunction at time 
t can be used as a way of focusing or probing the information given by the classical 
phase space. It is thus helpful to consider such cross-correlation functions in generating 
our semiclassical theory. One of the most important in physical applications is the 
autocorrelation function, C&), which is measurable in pumpprobe experiments [20-24, 
31, 321. For a localized wavepacket taken as the initial wavefunction, one has 

where B stands for the parameters (centre and variance of the wavepacket) that uniquely 
specify the initial state @p(x, 0). 

Using correlation functions considerably simplifies the job of incorporating nonlinear 
dynamics. Then a proper treatment of the nonlinear classical dynamics can be constructed by 
relying on multiple reference trajectories. The role of a reference trajectory is to represent 
a subclass of trajectories which are all extremely similar in their stability properties. In 
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general, the reference trajectories do not coincide with the position and momentum centroid 
of the wavepacket as does the trajectory at the heart of linear wavepacket dynamics. Such 
off-centre trajectories require some generalization, but are otherwise treated in the same 
way as the centred trajectories. At any given propagation time, the reference trajectories are 
selected in the local regions of the phase space which are physically relevant. For example, 
if a portion of the tail of the propagated wavepacket overlaps with the initial state, then the 
best reference trajectory originates from that tail, both in the position and momentum sense. 
Therefore the initial conditions of the reference trajectories are strongly time dependent, and 
the theory describes the choice of these reference trajectories as a function of time. With 
dynamics that is nonlinear, the need for multiple reference trajectories quickly develops 
whether the system is intepble  or chaotic. Typically, the set of all contributing trajectories 
is easily separated into subgroups which appear as thin branches in the corresponding 
classical phase space. If the initial distribution is sufficiently localized, each branch is 
separate from the others, as can be seen from the classical phasespace figures which will 
be shown for the Coulomb problem in section 5 .  We will see that the number of collisions 
with the Coulomb singularity will uniquely label the branches. Each branch supports a 
local wavefront constructed as if it is part of an independent linearized wavepacket whose 
reference trajectory falls well within the part of the branch overlapping the initial state. 

The coherent summation of the wavefronts gives the full semiclassical solution which is 
valid in the chosen region of phase space. Correlation functions are therefore written as sums 
over local solutions, one for each reference trajectory denoted by j .  The autocorrelation 
function is 

~ g ( t )  = C(BIB(t))j t (2)  
j 

The nonlinear dynamics now all resides in the summation, and a sfmightforward 
generalization of ordinary linear wavepacket dynamics wiIl give the individual local 
solutions. 

3. Selecthg reference trajectories 

Classical dynamics determines the appropriate set of reference trajectories. Roughly 
speaking, the phase-space portrait of a wavepacket can be deduced from its centroid and 
position and momentum uncertainties. Trajectories within elliptical phase-space domains 
having a volume a few times Planck‘s constant for each degree of freedom, are the most 
important. Reference trajectories outside this domain are Gaussian damped in the overlap 
integrals and do not contribute sufficiently to include them. By propagating just the outer 
boundary of the elliptical phase-space domain to a time t, the picture emerges as to the 
essential subgroups of trajectories that leave and return at f (see figures 1-3 below). A 
practical algorithm is needed to select one and only one reference trajectory centrally located 
within each branch. 

One method of finding a suitable set of these reference trajectory points, which we 
describe and use below, is to locate the intersection points of two special trajectory 
manifolds. The details of implementation depend upon whether a system is integrable, 
where orbits shear away from each other, or chaotic, where orbits exponentially diverge 
in a locally hyperbolic way. In integrable systems, the interesting manifolds of initial 
conditions are those which sample points along different orbits (or rather different tori 
in multi-dimensions). For example, two initial conditions lying at different points along 
the same orbit give redundant information; there is no shearing between them. In a one- 
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dimensional system, the initial manifold is a line closely normal to the shear which passes 
through the centre of the initial wavepacket. It is propagated exactly a time t to give 
the final manifold. The intersections between the initial and final manifolds determine the 
reference trajectories completely. The manifold will have half the dimension of the phase 
space (the number of degees of freedom, d).  For systems with homogeneous potentials, 
i.e. V(0rq) = &V(q) (harmonic oscil,lator, billiards, Coulomb potential, etc), a further 
simplification arises. As the energy changes, the orbits only change in their scale. All 
orbits can be related back to an orbit on just one energy surface. This feature can be used 
to remove the search along the direction of maximal energy change in phase space which 
thus reduces the search to (d - I)-dimensional manifold intersections. The chaotic case 
has already been given [I 1-15]. There the special directions in phase space are determined 
by the local directions of stability (compression) and instability (stretching) and one finds 
heteroclinic orbit sums. 

For the case of the initial decay of the propagated wavepacket away from the overlap 
region, it does not matter if the dynamics are chaotic or not. The reference trajectory 
may correspond to the mean position and mean momentum of the wavepacket as it is wirh 
ordinary linear wavepacket dynamics 12, 31. In the neighbourhood of a severe nonlinearity 
(as is the case near the region of the Coulomb singularity) an improvement to this choice 
of reference trajectory can be made. A better choice is the trajectory that has the same 
energy as the trajectory corresponding to the mean momentum and mean position, but is 
half way in time between the initial centre of the wavepacket and the propagated centre of 
the wavepacket. This choice is closer to the point of maximal overlap between the initial 
and propagated states. 

4. Wavefronts from reference trajectories 

We now develop the semiclassical method to calculate the wavefunction associated with 
a particular reference trajectory and the corresponding individual term of the correlation 
function of (2). It begins by closely following 121. For our purposes in later sections, 
the orbital angular momentum part of the Coulomb problem is of little interest and we 
can restrict ourselves to the one-dimensional Coulomb potential (or the case of zero 
angular momentum in three dimensions). In fact, zero angular momentum presents 
a serious difficulty because all trajectories collide with the singularity. We therefore 
develop the method in a one-dimensional notation though it should be clear that the multi- 
dimensional extension of most of the equations is straightforward. We reserve x to be our 
quantum configuration space variable and q ,  p (position, momentum respectively) to be our 
corresponding canonically conjugate phase-space variables. 

The Schrodinger equation in one degree of freedom (in units where fr and m are unity) 
is 
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(3) 

where V ( x )  is the potential. Let us assume that we are interested in the local approximation 
associated with one particular reference trajectory which is specified by its collection of 
position and momentum values for all times which we denote (qr,  p,}. We presume that 
the trajectory satisfies the equations of motion for the corresponding classical Hamiltonian, 
H = pf/2 + V ( q J .  A solution of (3 )  best suited to the neighbourhood of such a trajectory 
starts by expanding the potential V ( x )  about q, up to the quadratic form 

(4) 

,- . a w  t )  --- 1 a z y  t )  + v(x)*(x,  t )  - 
a t  2 ax 

V ( X )  = V ( q d  + V"(X - 4,) + ;V"(9r)(x - 4 2 .  
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Since q, is evolving, the expansion is continuously changing with time. 
Suppose that at t = 0, the wavefunction @,&. 0) is a Gaussian. Equations (3) and (4) 

govern the motion of a quantum harmonic oscillator with time-varying frequency and centre. 
Therefore, any initial state with a Gaussian or wavepacket form will, under evolution, always 
retain a Gaussian form, albeit distorted. We may therefore express the solution as 

V q ( ~ . t )  = Aexp(i[Mx-qt)+cuf(x - q I ) 2 + ~ r l l .  (5)  
The variables &,al and y, are complex functions depending on time and the initial 
conditions p. The normalization factor A is time independent. Substitution of the Gaussian 
wavefunction (5) and the approximate potential (4) into Schrodinger's equation and equating 
the coefficients of like powers of (x - 4') yields the ordinary differential equations 

1 2  

(6) 
GI = -2a: - f V"(qr) 
E.* = 2fft4I - Zor,tf - V'(q1) 

4 I  = PI P I  = -V". (7) 

Yr = 64 - 5.5 - V(qA + iw 

where qt and pr satisfy the classical Hamiltonian equations of motion 

A few substitutions in (6) considerably simplify finding their solutions. The first equation 
of (6) can be solved by assuming that af has the form 

fl 
7%' 

ar = - 

where g, and fr satisfy the linear equations 

€!I = ft ' f, = -V"(q,)g, .  
Equations (7) and (9) indicate that gl and fl correspond to first-order variations of the 
coordinates qr and p r .  Setting {I = pt  + cI, generates the equations 

(10) r: 
'-7 rI = -2ciIc, +I = L + ioc 

where L = p:/2 - V(qI) is the classical Lagrangian. 
In order to integrate (lo), we need to find the integral of aI with respect to time: 

1 f '  1 
L'oct dt' = 5 dt' = - 2 ln(g,) 

. -  

where we have chosen go = 1. Then the solution of the first equation of (10) takes the form 
50 

c1 = - 
g: 

where CO is a constant determined by the initial conditions. Therefore, the second equation 
of (10) becomes 

r2 
%I 

= L+iocI - +. 
Integrating the last term on the right-hand side of (13) we find 

where gCh) is a particular solution to the first equation of (9) and satisfies that the Wronskian 
W(gI, g")) 1. Therefore, g'h)(0) = 0 and gCh)(O) = 1 and the solution of (13) is 

i In gI <,"g") 
YI = yo + s + - - - 

2 2gt 
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where S = l d  Ldt' is the classical action. 

average momentum of pfl ,  has the form 

I M Smirez Barnes et a1 

A unit-normalized initial Gaussian wavepacket of variance U;. centred at qB and with 

Comparing to the notation of (3, we obtain at t = 0 

a0 = i/%gZ YO = (qo - q 6 X ~ o ( q 0  - qB) + pal 

30 = $0 -Po = %o(qo -qB) +PO -Po. 

t o  = PB + %o(qo - qB)  

and A = ( n ~ ; ) - ~ / ~ .  Setting go = 1,  implies that 50 in (12) is 

Therefore, 

Finally, substituting the initial Gaussian wavepacket $&, 0) and the propagated 
wavepacket ?hp(x, t) ,  both given by (S), into ( B I B ( t ) ) j ,  we find an individual term of 
the autocorrelation function to be 

where j labels the particular reference trajectory {qr, pr)j. and a,, yr, and are given by 
( S ) ,  (15) and (19) and CUO, yo, and $0 are given by (17), all evaluated for each particular 
reference trajectory. Depending on the particular form of the potential V ( x ) ,  the functions 
g,, ft. and g@) are obtained by solving (9). Exactly the same result is obtained using the 
Green-function approach [14]t. It should be noted that (pIp(t))j depends on exp(iy,) (see 
(20)) which in t u n  is proportional to gT1'*. Although the square root is double-valued, 
the appropiate branch is generally obtained by the requirement that the phase must evolve 
continuously with time. However, for the case of the Coulomb potential which is singular 
at the origin, g, vanishes when the reference trajectory crosses this point, and it is then 
not possible to fix the phase by this continuity argument. We have found that this phase is 
unity, but this requires mathematical justification. 

For the special case that q, = 40, equation (20) simplifies considerably to the special 
form 

To obtain the full autocorrelation function C,&) of (2), a summation over reference 
trajectories j is made where the individual terms are given by (20) (or (21) if qI = 40). 

t To make detailed comparison behvem (20) and the formulae &'ea in [14, 151, note that fi,g,. and gB) can be 
wriuen in terms of stability matrix elements M f j :  f = 2aoM11 + M I L  g, = 2CloM21+ M22. and g(h) = M21; see 
also [191. 
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5. Coulomb Potential 

For the one-dimensional Coulomb potential V ( q )  = - l / q  where q > 0, the classical 
equations of motion can be solved in parametric form, with 

1 sin B 
- 2E (1 -cos@ 

q - -(1 -COS@) p t  = (2E)'l' 

where B is implicitly determined by the time t 

E = l /qo - pi12 is the magnitude of the Kepler energy for the bound orbit starting at 
(40, PO), and the constant to is determined by what B is at t = 0. Therefore, the solutions 
to (9) are 

where the initial conditions have been chosen to be go = 1 and fo = bo = '/a; (see 
details in appendix A). The particular solution g(h) to the first equation of (9) is 

(see appendix A). The classical action for the Coulomb potential is 

S = 3Ef + 2(qrpr - qopo). (26) 
We can now calculate at, yr. and from (8), (15) and (19) and then substitute them in (20) 
to obtain an individual term of the autocorrelation function associated with the classical 
reference trajectory qr,pr. 

In what follows, we are going to simplify many of our~calculations by choosing the 
initial wavepacket @ # ( x ,  0) of (16) to be centred at the outer classical turning point of the 
Coulomb potential, so that q p  = 1/Eg and p@ = 0. The initial variance of this Gaussian 
wavepacket is U;. The Kepler period of the centre of the Gaussian is q = 2 ~ / ( 2 E p ) ~ / ~ .  

To evaluate the autocorrelation function for the Coulomb potential, a suitable set of 
reference trajectories must be chosen. We want a reference trajectory at time t to be at a 
point in phase space'that is close to the maximal overlap between the initial and propagated 
wavepackets. The initial decay of the wavepacket for f < rp/2 and the recurrences of the 
wavepacket for t =- q / 2  must be handled separately. 

For the case of the initial decay, a good choice for a reference trajectory is the trajectory 
that is about halfway between the initial centre of the wavepacket q# and the propagated 
centre of the packet after a time t (kept < y / 2 )  in phase space. Figure 1 shows a contour 
in phase space of the initial Gaussian wavepacket and the contour of its propagated state 
after a time t < y / 2 .  The points on the initial contour are propagated forward to time t 
by the classical equations of motion. The centre of the Gaussian has an energy of E8 and 
starts at (46, p6) = (l/Eg, 0). During a time interval t < t g /2 ,  a classical trajectory with 
the same energy Eg that starts at a point (qc, pc)  is propagated to its image point (qc. -pc). 
This point is near the maximal overlap between the initial and propagated states, which 
ensures an accurate approximation to the autocomelation function when used as a reference 
trajectory for the initial decay. This choice of reference trajectory also has the advantages 
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qC= 2(60)2, p @ =  0, we= 600, t' = 0.1 

Figure An ellipse in phase space 
representing a la contour of the initial 
Gaussian with parameters q P , p B , q  is 
propagated classically to a time 2' = 0.1. 
The c e n m  of the initial and propagated 
ellipses are denoted by 0. The reference 
trajectory has the same energy E@ = 1/48 
as the centre of the wavepacket and s m s  

denoted by 0). The point of maximal 
6500 7000 .-7500 overbp between the initial and propagated 

wavepackets is near q C .  - p J .  

Lo 0 
9 
0 
I 

O E  9 

at (%. PJ and lands at (qs, - p d  (both 

of staying away from the Coulomb singularity and that the calculations simplify somewhat 
due to the symmetry between the two points (40, PO) = (qc. pc) and (q:, p : )  = (qc, - p J .  
Note that both the initial and final conditions of the reference trajectory change with time as 
the autocorrelation function is evaluated. These constraints given by our choice of reference 
trajectory yield the relations 0 = 0, at t = 0 and 0 = 2n - 0, at time t .  Therefore from 
(23) (where to = (-ec + si110,)/(2Ep)~/~), we obtain 

(r - 0, + sin BE) (27) 

which is solved numerically to find 0,. Also qc and pc can be evaluated at 0, using (22). 
Then from (24) we obtain 

2 
( 2 ~ p  

t =  

where a0 = i/2$ and Ea = 1/$. From (25) and (26) we obtain 

S = 3Egt --4qcp,. (30) 
Using (28)-(30) wecan calculatea:, y:, and Ct from equations (8),  (15) and (19)respectively, 
where q: = qe, p: = -pc, and the initial conditions ao, yo, and t o  are given by (17) where 
qo = qc, po = pc .  and pp = 0. Since qt = 40, the autocorrelation function for the initial 
decay is given by (21), where the sum over trajectories in (2) reduces to one term given by 
the reference trajectory defined by (qc, p c ) .  

When we continue the approximation for times greater than half the Kepler period of 
the central trajectory, we soon find that the propagated state h& more than one contribution, 
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Figure 2. An ellipse in phase space 
representing a 10 contour of the initial 
~auss ian with parameters q 0 , p e . q  is 
pmpagmed classically to a time t = 
4.45. The inner branch is formed by 
trajectories on their fifth return, and the 
outer branch are those on their fourth 
rentm. The iniM manifold ( p  = 0 curve 
inside ellipse) is like- propagated to 
give the final manifold (dotted curve). and 
the intersections conespond' to ule initial 
and final points (denoted by Cl) of the 

6500 7000 7500 reference rrajecrories used to calculate the 

0 

4 autocorrelation funcdon. 

as the leading edge of the propagated wavepacket has travelled around the Coulomb centre 
more times than the trailing edge. We choose the initial manifold as the q axis in phase 
space, which in this case is normal to the flow in phase space and passes through the 
centre of the initial wavepacket. This manifold is propagated after a time t to give the 
final manifold. The intersections between the two manifolds determine the set of reference 
trajectories. Therefore, the reference trajectories are given by the periodic points along the 
q axis in phase space at a time t > q/Z. Figure 2 illustrates the procedure for an initial 
state centred on the q axis, which has propagated into two contributions after a time t (now 
considering > rp/2). The leading edge has ixavelled around the Coulomb singularity once 
more than the trailing edge. The initial manifold along the q axis has evolved into the final 
manifold to give the intersections which are near the areas of maximal overlap between the 
final and initial states. The periodic points which correspond to our choice of reference 
trajectories follow the points of maximum overlap between the initial wavepacket and the 
propagated wavepackets as time passes, as illustrated by figure 3. These points are simple 
to obtain, one has ody  to tune the energies of the periodic points such that they close at 
exactly time t .  

Let the j th  periodic point be denoted (4,. 0). Then (40, PO) = (ql, p t )  = (qj, 0). The 
periodic orbits will return to the starting classical tuming points qj which are given by 

where t' = t/rp is the time in units of the Kepler period re of the central trajectory and j 
is the number of times the periodic orbit has returned to the classical turning point during 
timet'. Such periodic orbits have an energy Ej = l / q j  and a period rj = Z Z / ( ~ E ~ ) ~ / ~ ,  and 
so jq = t = t'rp. Therefore, the correlation function for t' 0.5 is given by (21) where 
we calculate every time-dependent quantity by setting qr = qo = qj and pl = po = pj = 0. 
Thus, from (24)-(26), we obtain: gt = 1, fr = Zero -b 3r8j2/(2qrept'), g@) = 0, and 
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a@= 2(60P. o.= 600. t' = 20.0 

Figure The initial and classically 
propagated wavepackets in phase space 
when f' = 20.0. The initial ellipse is 
defined by the la contour and the periodic 
points along the q axis which correspond 
to the reference trajectories are denoted by 
boxes. These periodic points corresponding 
to the reference trajectories are denoted by 
boxes. These periodic points have travelled 
around the Coulomb singularity 18. 19, 
20, 21, and 22 times from right to left, 

P respectively. 

S = 3rp( j2 t31/3 /@.  Using (8), (15), (17) and (19), the quantities in (21) are given by 

where q, = i/2$. We find that the autocorrelation function (excluding the initial decay) 
for an initial Gaussian wavepacket centred around the turning point q p  = 1/Ep and the 
variance U; is 

where pp = 3y /8ru0q~0~~ is a purely imaginary unitless quantity. Note that the major 
contributions in the sum come from the j th  terms where j is close to t'. 

We now compare the autocorrelation function obtained with our semiclassical method 
and that obtained from an exact quantum calculation (see appendix E) for the case where 
q p  = 7200 and up = 600. This is vey-close to experimentally realizable wavepackets 120- 
24, 31, 321. In this case the central orbit conesponds to a quantum number of n = 60. 
Figure 4 illustrates the excellent agreement between the real parts of the semiclassical and 
quantum autocorrelation functions for the initial decay and first recurrence of the Gaussian 
wavepacket. The comparison between the semiclassical and quantum autocorrelation 
functions is extended to 10 and 25 Kepler periods of the central trajectory by plotting 
the absolute values of the autocorrelation function in figures 5 and 6, respectively. 

In addition to the autocorrelation function, the semiclassical approximation accurately 
reproduces the quantum spectrum. The Fourier transform of Cp( t )  gives the intensity 
weighted spectrum, 
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48' 2(60)2. o#= 600. pB= 0 
d , , , ,  

I 
1 ' 1 ' '  

-U 10 0.5 1 1.5 

t' 

q B =  2(60)2, U#= 600, p # =  0 - ,  , , , 

2 4 6 a 10 
t' 

$(E)  = d t  exp(iEt)C&) s 

Figure 4. A comparison of the real 
pm of the semiclassical (full curve) and 
the real part of quantum (bmken curve) 
autmrrelation functions CS(t'). where 
qS = 7200 and up = 600 for the 
initial decay and initial recurrence ai the 
Gaussian wavepacket. 

Figure 5. A comparison < the absolute 
value of the semiclassical ( I curve) and 
quantum (broken curve) autocorrelation 
functions C,(t'), where qs = 7200 and 
up = 600 for the first 10 Kepler periods 
of the centre of the Gaussian wavepacket. 

(34) 

and figure 7 shows the comparison with the exact spectrum, given by 

W) = I(BIEn)I2W - En) * (35) 
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q p =  2(60)2, u8= 600, PE- a 

t ’  

q8= 2(60)2, up= 600, pP= 0 

quantum number, n 

Figure 6. A comparison of the absolute 
value of the semiclassical (full curve) 
and quantum (broken curve) autocorrelallon 
functions Co(t‘). where qo = 7200 and 
u~ = 600 for the 10 Kepler periods 
between 15 and 2.5 Kepler periods of 
the centlal orbit. Notice that the full 
quantum recnrrences of the wavepacket, al 
approximately nf3 = 20, axe accurately 
described. 

Figure 7. A comparison between the 
semiclassical (fuU curve) and quantum 
(circles) spectra for the case of qB = 7200 
and <+e = 600. 

Plotting the spectrum computed with a finite time resolution of 50 Kepler periods vs the 
‘quantum number’ n = (ZE)-’/* in figure 7 shows that the peaks occur very accurately at 
integer values of n, as expected for the Coulomb potential, and the intensities are within 
24% of the exact values. This remarkable reproduction of the familiar quantum spectrum of 
the Coulomb is obtained with classical reference trajectories that have a continuous energy 
range. No quantization conditions on the actions of the classical reference trajectories are 
imposed as they are with standard WKB quantization. Indeed, standard WKB quantization 
is not valid here due to the Coulomb singularity at the origin, and it gives an incorrect 



Wavepacket propagation in the Coulomb potential 3311 

48' 2(55)2. E,= 1/2(60)2. u8= 600, t' = 20 

4 

Figure S. The initial and classically- 
propagated wavepackets in phase space 
when t' = 20.0 for the w e  where the initial 
waveoacket is not at the classical tumine - 

4 point. 

s p e c t m  [36]. 
For the case where the initial Gaussian wavepacket has a non-zero average momentum, 

the agreement between the semiclassical and quantum autocorrelations is better than the 
case when p p  = 0. In this case, the initial wavepacket is away from the classical turning 
point. Near this point, there is a high degree of curvature in the classical manifolds in 
phase space. Because the classical trajectories form straight lines away from the classical 
turning point (see figure 8), the wavepackets are more easily modelled with linear Gaussian 
approximations. The reference trajectories for such a wavepacket are similar to the reference 
trajectories for the initial wavepacket at the classical turning point. The reference trajectories 
for the initial decay (t  < q/Z )  of the autocorrelation function have the same energy as the 
central trajectory of the Gaussian wavepacket The coordinates (PO, 40) and ( p r ,  qr) are 
such that it takes t / 2  to propagate from (PO, qo) to (Po, qp) and t/?. to propagate from 
(pa.  q p )  to ( p i ,  qr), just as it does for the case where p p  = 0. For t z rp/2, multiple 
trajectories are used. For this case, the initial manifold in the phase space is taken to be the 
constant momentum line at p p  The reference trajectories are the points that return to this 
line after a time t .  The periods of the reference trajectories are related to the period of the 
central trajectory as before, j q  = t = t ' q ,  where rj = 2 7 ~ / ( Z E j ) ~ / ~  and Ej = l / q j  - p j  12. 
Therefore, the reference trajectories are given by 

where j is the number of collisions with the Coulomb singularity. Once the reference 
trajectories are found, the autocorrelation function is then calculated with (21). Figure 8 
illustrates the propagation in phase space of a non-zero averagemomentum wavepacket 
The corresponding comparison between the semiclassical autocorrelation and the quantum 
correlation is shown in figure 9. 
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q@= 2(55)2, E,= 1/Z(60)z, c,= 600 
3 , , ,  I ' 2 8 I ' 4 I ' ' ' 

2 I U 

t j 

0 2 4 6 a 10 
t '  

Figure 9. A comparison of the absolute 
value of the semiclassical (full curve) and 
quantum (broken curve) autocarrelation 
functions C,&'), where Ea = +(60)*, 
q p  = 6050 and UJ = 600 for the first 
10 Kepler periods of the centre of the 
Gaussian wavepacket. 

6. Wavepacket recurrences 

In integrable systems, wavepackets recur after a well defined time [2&34]. This recurrence 
time can be calculated from the semiclassical approximation. When a recurrence occurs, 
each contribution to the autocorrelation function corresponding to a classical reference 
trajectory should add constructively. In other words, at the recurrence time each contributing 
phase to the autocorrelation function should be nearly equal (mod 2 ~ ) .  The dominant t ime 
dependent phase in the autocorrelation function of (33) is 

Expanding the phase factor to second order in k = j - N ,  where N is the nearest integer 
to t ,  and substituting for y / q p  = Z ~ r ( q J / 2 ) ~ / ~  yields 

Classically, we can express the centre of the initial Gaussian wavepacket as q p  = 2(np+f)z, 
where np is an integer and -4 < f < 4. F e n  (38) at time t' = N - f + 6 becomes 

where N is the nearest integer to ng/3, and 8 is an undetermined small parameter. Expanding 
(39) up to quadratic order in f, k and 6 gives 

@j - @N = 2nk [np + (8 - k / 2 )  ( n g / 3 N )  + f (1 - n g / 3 N ) ] .  (40) 
For large quantum number, np/3N can be taken to be unity, and then if 6 = rt4 the 
difference in the phases correspondingto adjacent reference trajectories is an integer multiple 
of 2n and the initial wavepacket reforms at a time t' = N - f zk $. Furthermore, if 8 = 0 
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in (40). then destructive interference between each contribution occurs at t‘ = N - f ,  as 
the relative phase difference between adjacent contributions is n. A full recurrence of the 
wavepacket is illustrated in figure 6, which for np =~60 occurs at t’ = 20 f 112. 

As time passes in the region of the initial localized wavepacket, the reference trajectories 
continuously shift towards the origin and become more densely spaced. Near the recurrence 
time, the spacing of the reference trajectories is close to the spacing of the Bohr orbits. At 
a special time, the classical reference trajectories nearly coincide with the Bohr orbits. The 
difference between q p  and nearby Bohr orbits is given by 

qp - 2(np - k)’ = 4np(f + k )  + 2(f’ - k2)  (41) 
where k is a small integer labelling the nearby Bohr orbits. Now let us examine the difference 
between q p  and nearby reference trajectories qj = qp(t/j)’/’ at a time t’ = N - f ,  

where k = j - N ,  and N is the nearest integer to nb/3 as before. Expanding (42) to first 
order in f and k yields 

qp - qJ 4 q ( f  + k)  (na /3N)  . (43) 
If the quantum number np is large, then the factor np/3N is close to unity. Comparing 
(43) with (41) shows that to first order the classical reference trajectories coincide with the 
Bohr orbits near the time when the wavepacket reconstructs itself. 

7. Wigner distribution and the classical probability 

Further insight into the classicalquantum correspondence is gained by calculating the 
Wigner distribution and the classical probability function to the same level of approximation 
as our semiclassical method. The classical phase-space distribution analogous to the 
quantum wavepackets is given by the Wigner probability distribution [37-391 

F,(x, p,  t )  = (2n)-”2 / @*(x - YP. 0 exp(-ipy)W + YP, t)dy (44) 

which is positive definite for the case of a Gaussian wavepacket. Upon substituting the 
wavefunction 

(45) W ,  t )  = A exp(i[(pt + M x  - 4,) + a h  - qJz + nl} 
into (44), the Wigner function takes the general form of 
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In  the limit h -+ 0, the Wigner probability distribution satisfies the Liouville equation 

I M Sucirez Barnes et a1 

aF, aF, aF, - +--p--V'(.X)=O 
at ax aF 

Substituting (46) into the Liouville equation and expanding the potential to quadratic order 
about a reference trajectory q, 

(49) V ( X )  = V(q1) + V"X - 41) + ;v"(qr)(x - q*I2 

as we did with Schrodinger's equation, generates the following differential equations 
(obtained by equating coefficients of like powers of ( x  - q l ) ( p  - p, ) ) :  

a, = c,V"qt) 6, = -c, 
(50) 

A, = o  
i, = -2a, + b, V"(qg) 2, = e,V"(ql) i, = -dl . 

If the time evolution of q,, p g ,  f,, a,, and yl in (47) are given by the ordinary differential 
equations derived in the semiclassical approximation (equations (6), (7) and (lo)), then (47) 
are solutions to the differential equations derived from the Wigner function (SO) as well. 
For instance, substituting the semiclassical solutions to a,, yt, and fl  into the first of (47) 
gives A, = (Z/n)'nexp[-(q, - 40)' - $(pp  - p,#] which is indeed a constant. In this 
way, the classical probability function associated with each reference trajectory (q,, p,) is 
equal to the square of an individual term of the semiclassical autocorrelation function 

/" F,(~,p,t)F,(x, p,0)drdp=I(BIB(t))j12. (51) 

In calculating the total classical probability function Pp(t)  the phase information associated 
with each reference trajectory is absent in the summation of the terms for each reference 
trajectory. Therefore, adding the terms associated with each reference trajectory together 
gives an incoherent sum, where there is no interference between the individual terms 

The classical analogue of the autocorelation function is the square root of the classical 
probability function, illustrated in figure 10. After long times the classical probability 
function approaches a constant value, which can be found analytically (see appendix C for 
details) to be 

This analytical result agrees very well with the numerical results, illustrated in figure 10. In 
the semiclassical autocorrelation, the phases are. present and we have a coherent sum which 
yields the quantum interference between terms 

Thus, as we have seen in section 6, the reproduction of the recurrences in the autocorrelation 
function in the semiclassical approximation is due to the principal contributions of the sum 
adding in phase. 
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qo= 2(60)'. o#= 600, pB= 0 

4 I 

0 5 10 15 

3315 

Figure 10. The square root of the classical 
probability function where qo = 7200 and 
a8 = 600. The incoherent sum of w v e  
packets causes tbis function to level off m 
a constant afier long times, The analytic 
value of this comtant found by (53) in~this 
case is 0.3958, which ag~ees accuratelv 

t '  with the figure. 

8. Discussion and conclusions 

The semiclassical theory presented here incorporates nonlinear dynamics through multiple 
reference trajectories which are govemed by the classical equations of motion. The use 
of these reference trajectories in some sense explicitly and successfully takes advantage of 
Feynman's intuitive notion of a classical path. By incorporating the nonlinear classical 
dynamics correctly, we have demonstrated the long-time accuracy of the semiclassical 
approximation in the Coulomb potential. However, as one might expect, there are 
circumstances where this approximation fails. Failure of the semiclassical approximation is 
expected when the behaviour of the classical motion in the neighbourhood of the reference 
trajectory is no longer well modelled by linear approximations. In this way, the accuracy 
of the semiclassical method can be predicted by looking at the behaviour in phase space 
of the classical analogue. An example of the breakdown of the semiclassical method can 
be seen in figure 11. In this case the momentum uncertainty is twice that of the previous 
example, seen in figure 3, which leads to more curvature in the strips of the time evolution 
of the initial Gaussian wavepacket in phase space. Comparing the semiclassical and exact 
autocorrelation functions in figures 12 and 13 shows the breakdown of the semiclassical 
approximation in this particular case. 

Our extension of linear wavepacket dynamics to include the use of multiple reference 
trajectories gives a simple and elegant derivation of semiclassical theory while avoiding 
the explicit use of the Green-function formalism. Applying the method to the Coulomb 
potential, we find that the semiclassical approximation is in excellent agreement with 
a quantum calculation of the autocorrelation function in many circumstances. The 
semiclassical approximation yields all of the detailed and long-time quantum behaviour 
including the wavepacket and fractional recurrences, and a remarkable reproduction of the 
quantum spectrum through a Fourier transform of the semiclassical autocorrelation function. 
Calculating the Wigner distribution, we find that the classical probability function approaches 
a constant for long times due to the incoherent sum between the terms for each reference 
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qB= 2(60)2, U#= 300, t' = 20.0 

q@= 2(60)2, U@= 300, p 
- 1 . t  I I 4  I I t I I , ,  

10 2 
t' 

01'' ' ' ' ' ' ' ' ' 
0 

Figure 11. An ellipse in phase space 
representing the initial Gaussian with 
paramete~s q, = 7200, pfl  = 0. and 
U ,  = 300 is propagated classically, to a 
time t' = 20.0. The high momentum 
uncertainty causes the overlap between the 
initial and propagated wave packets to 
be not well modelled by linear Gaussian 
approximations. 

F i r e  12. The absolute value of the 
semiclassical aueocomelation function is 
shown for long times, where qB = 7200 
and as = 300. The high momentum 
uncertainty cwses a poor comparison with 
the exact quantum autocorrelation. shown 
in figure 13. 

30 

trajectory. Thus, we gain the insight that the reproduction of the detailed quantum behaviour 
in the semiclassical approximation is due to the constructive interference between the terms 
associated with each reference trajectory. We find that the Coulomb singularity poses no 
serious problems as long as the end points of the reference trajectories are far away from 
the origin. Considering the success of the semiclassical approximation of the Coulomb 
potential, this method promises to be useful in other applications in atomic and molecular 
physics as well. 
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t '  

Appendix A. Solutions for f and g 

U 
30 

Fiwre 13. The absolute value of the 
quantum autocorrelation function is shown 
for long times, where q@ = 7200 and 
a# = 300. 

In terms of the independent variable 8 ,  g, satisfies the second-order differential equation 
(recall (S)), 

d2g dg (1 -cos8)--sin(8)--2g=0. dB2 d8 
In order to solve this equation, let,,us think of a nearby trajectory 6, which can be 

approximated by it = qt + Sq,, where 6, = 3, = -V'(&), and ir = p, = -V'(qt). Now, 
V'(@ can also be approximated in terms of q,, therefore gr = -V'(q,) - V"(q,)Sq,, but 
also 6r = i t  +a<:. Therefore Sq,  = -V"(q:)Gq,. But this is the same equation (9) that g, 
must satisfy. This means that if we solve for Sq, we solve for g,. Therefore solving for 
Sq: = (aqt/aE)SE+(aq,/a8)S8 subject to the constraint St = (a t /aE)sE+(a t /ae ) se  = 0 
we find two solutions for g,, one regular solution: 

and one singular solution: 

which is proportional to p , ,  (recall (22)). Therefore, g, is a linear combination of these two 
solutions: 

(A4) gr = c@)g(4 + cWg(b) 

where the constants are determined by the initial conditions. Correspondingly, we have 
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and 
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fi is a linear combination of these last two equations, namely 
fi = c@lf(~l + c(b)f@) , 

For this paper we have arbitrarily chosen go = 1 as our initial condition. This gives 
fo = 2 ~ 0  = i/opz (recall (8)). For our calculations, it is better to write g, and ft in terms 
of q, and p I  : 

which are (24) in section 5. In this language, the particular solution g ( k )  which appears in 
(14) is 

1 dh) = (2P09r - 2%Pr - 3~PfPO) 

which is (25), and the action for the Coulomb potential is 

S = 3Et  + XqrPr - qopo) 
which is (26). 

Appendix E. Exact quantum calculation 

To calculate the autocorrelation function, a Gaussian wavepacket is conshucted from the 
energy eigenstates 

where the expansion coefficients b, are given by 
W 

bn = W. o)h(x)  d x .  

The time evolution of the wavepacket is then given by 
W 

0 = Cbn@&) exp(- iW G33) 
"4 

where E,, are the energy eigenvalues. For the Coulomb potential, the energy eigenvalues 
are 

n = l . 2 , 3  ... (B4) 
1 

2nZ 
E n -  

in the units where E ,  the mass, and the strength of the potential are unity. The autocorrelation 
function is 

c(t) = lO'e(x, t )+* ix ,  0)d.x = Ib,lzexp(-iE,t). (B5) 
m 

"=I 
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The expansion coefficients b, are calculated by numerical integration of (B2). 
Schrodinger’s equation for the Coulomb potential can be solved exactly. The normalized 
energy eigenstates are 1401 

where LA are the associated Laguerre polynomials [41] 

The classical turning point for each eigenstate is at 2nZ. These eigenfunctions are the same 
as the three-dimensional hydrogen eigenfunctions with zero angular momentum. 

For high quantum number n the power series for the Laguerre polynomials in (B7) 
becomes difficult to compute numerically because of round-off error. For small x ,  near the 
singularity in the potential, the power-series solution is computable. Near the classical 
turning point, where the potential can be approximated as linear. the eigenfunction is 
approximated by the Airy function which is calculated using a power series [41], 

(88) Ai(y) = c l W  - czG(y) 
where c ,  = 0.355 028 053 887 817, c2 = 0.258 819 403 792 807 and F and G are given by 

m 

k=O 
m ,,3k+I 

‘(’) = C3k (t), (3k+ I)! 
k=O 

with 

(B + f), = 1 

In the region between the Airy function solution and the Laguerre polynomial power-series 
solution, the eigenfunction is approximated by the standard WKB solution [40] 

sin -(-Y)~’* + - (2 ”> 4 
1 

e - ( E  - V(x))1/4 3 
Well beyond the classical turning point the eigenfunction is approximated by the standard 
WKB solution that exponentially decays to zero. 

The amplitude of the Laguerre polynomial power-series solution is matched to the WKB 
approximation near the origin. Then, this normalized WKB solution is matched to the Airy 
function power-series solution close to the classical turning point. Finally, the amplitude 
of the approximate solution is matched to the decaying WKB approximation beyond the 
classical tuming point. 
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Appendix C. Long-time behaviour of classical probability 

Here we find the limit as f --+ 03 of the square of the classical probability function given 
by the Wigner distribution (52). Starting with (33) we find the absolute square of each 
individual term. Thus we obtain 

I M Surirez Barnes et a1 

where €6 = 9(i~up)~/64. Note that for the values which make the semiclassical 
approximation optimum, $ Y ep. Note also that only the terms where t' 2: j for large t' are 
relevant, that is, give a non-zero value for the exponential. Therefore, in this approximation 
€8 j4 >> t"$. Then, we can write 

where we introduce A j  (= 1) to facilitate the next step. Now, in the limit where t' + 00, 

we can approximate this sum by the inte-d 

where z = j/t'. This integral can be evaluated by using the method of steepest descent. 
Changing variables to w = z-*l3 - 1 and integrating, we obtain 

which is (53). 
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